
Forest Play Ground - Binary Trees

This problem is worth 15 points.

Please understand, according to Wikipedia, Tree terminology is not well-standardized and varies in the literature. You

should read the descriptions carefully in this problem to ensure that you are solving the given problem.

 A rooted binary tree has a root node and every node has at most two children.

 A full binary tree (sometimes referred to as a proper or plane binary tree) is a

tree in which every node in the tree has either 0 or 2 children.

 In a complete binary tree every level, except possibly the last, is completely

filled, and all nodes in the last level are as far left as possible. It can have

between 1 and 2h nodes at the last level h. A complete binary tree can be

efficiently represented using an array.

Methods for storing binary trees

Arrays

Binary trees can also be stored in breadth-first order as an implicit data

structure in arrays, and if the tree is a complete binary tree, this method

wastes no space. In this compact arrangement, Assuming the root has index

zero, if a node has an index i , its children are found at indices 12 i (for

the left child) and 22 i (for the right), while its parent (if any) is found at

index . (In this case,  x is the largest (Closes to positive

infinity) Integer value smaller than or equal to x. For example,   29.2  .

For example, the rooted binary tree in Figure 1 and Figure 2 would be

represented by the flowing lines of code:

String[] figure1 = {“1”, “2”, “3” ,”4”, “5”, “6”, “7”};

String[] figure2 = {“A”, “B”, “C” ,”D”, null, “E”, null};

Note: figure 1 is full and complete while figure 2 is no full and not complete.

In this problem you are to complete the ForestPlayGround class which implements the functionality of a rooted

binary tree. You may implement this class in any manner, but the rooted binary tree and the algorithms described in

this problem assume an array as the under lining data structure used to store the rooted binary tree. The nine methods

are:

https://en.wikipedia.org/wiki/Tree_data_structure
https://en.wikipedia.org/wiki/Root_node

The getNumNodes()method returns the number of non null nodes in the rooted binary tree.

The following table show sample results of the getNumNodes method.
The following code Returns

String[] figure1 = {"0", "1", "2", "3", "4", "5", "6", "7"};

ForestPlayGround t = new ForestPlayGround(figure1);

t.getNumNodes()

8

String[] figure2 = {"A", "B", "C", "D", null, "E"};

ForestPlayGround t2 = new ForestPlayGround(figure2);

T2.getNumNodes()

5

The getNumLeafs()returns the number of leaf nodes in the rooted binary tree. A node is a leaf node if the node has

no children. That is, the node at index i is a leaf node if the nodes at both index 12 i and index 22 i do not exist or
are null.

The following table show sample results of the getNumLeafs method.
The following code Returns

String[]figure1 = {"0", "1", "2", "3", "4", "5", "6", "7"};

ForestPlayGround t = new ForestPlayGround(figure1);

t. getNumLeafs();

4

String[] figure2 = {"A", "B", "C", "D", null, "E"};

ForestPlayGround t2 = new ForestPlayGround(figure2);

T2.getNumLeafs()

2

The getLeftChild(int p)method returns the value contained in the node that is the left child of the node at

index p. The left child of the node at index p is the node at index 12 p . If no node exists, return null.

The following tables show sample results of the getLeftChild method.
You may assume the node at index p is not null.

The following code Returns

String[] tree = {"0", "1", "2", "3", "4", "5", "6", "7"};

ForestPlayGround t = new ForestPlayGround(tree);

t. getLeftChild(4);

null

The getRightChild(int p) method returns the value contained in the node that is the right child of the node at

index p. The right child of the node at index p is the node at index 22 p . If no node exists, return null.

The following table show sample results of the getRightChild method.
You may assume the node at index p is not null.

The following code Returns

String[] tree = {"0", "1", "2", "3", "4", "5", "6", "7"};

ForestPlayGround t = new ForestPlayGround(tree);

t. getRightChild(2);

“6”

The getParent(int p) method returns the value contain in the node that is the parent of the node at index p.

Use the information given in getLeftChild and getRightChild methods to determine the index of the parent
node.

The following table show sample results of the getParent method.
You may assume the node at index p is not null.

The following code Returns

String[] tree = {"0", "1", "2", "3", "4", "5", "6", "7"};

ForestPlayGround t = new ForestPlayGround(tree);

t. getParent(5);

“2”

The getAncestors(int p) method returns a List<String> of the values contained all of the nodes that are
ancestors of the node at index p. Node A is an ancestor of node B if A is a parent of B, or if some child of A is an ancestor
of B. In less formal terms, A is an ancestor of B if B is a child of A, or a child of a child of A, or a child of a child of a child of
A, etc.

The following table show sample results of the getAncestors method.
You may assume the node at index p is not null.

The following code Returns

String[] tree = {"0", "1", "2", "3", "4", "5", "6", "7"};

ForestPlayGround t = new ForestPlayGround(tree);

List<String> ancestors = t. getAncestors(6);

ancestors.size() 2

ancestors.contains("2") true

ancestors.contains("0") true

The getDescendants(int p) method returns a List<String> of the values contained all of the nodes that
are descendants of the node at index p. Node B is a descendant of A if A is an ancestor of B. If the node at index p has
no descendant, return an empty list.

The following table show sample results of the getDescendants method.
You may assume the node at index p is not null.

The following code Returns

String[] tree = {"0", "1", "2", "3", "4", "5", "6", "7"};

ForestPlayGround t = new ForestPlayGround(tree);

List<String> descendants = t. getDescendants(6);

descendants.size() 3

descendants.contains("3") true

descendants.contains("4") true

descendants.contains("7") true

The isFull() method returns true if the String[] represents a Full binary tree. Recall that a full binary tree is a
binary tree in which every node in the tree has either 0 or 2 children. If the tree is empty, return true.

The following table show sample results of the isFull method.
The following code Returns

String[] tree = {"0", "1", "2", "3", "4", "5", "6", "7"};

ForestPlayGround t = new ForestPlayGround(tree);

t.isFull() false

String[] emptyTree = {};

ForestPlayGround emptyT = new ForestPlayGround(emptyTree);

emptyT.isFull() true

The isComplete() method returns true if the String[] represents a Complete binary
tree. Recall, in a complete binary tree every level, except possibly the last, is completely filled,
and all nodes in the last level are as far left as possible. If the tree is empty, return true.

For example, the rooted binary tree in Figure 3 represented by the flowing code is a complete
binary tree.

 String[] figure3 = {“A”, “B”, “C” ,”D” };

Again, the rooted binary tree in Figure 4 represented by the flowing code is a NOT complete
binary tree.

 String[] figure4 = {“A”, “B”, “C”, null, null, ”D” , “E”};

The following table show sample results of the isComplete method.
The following code Returns

String[] figure3 = {"A", "B", "C", "D"};

t = new ForestPlayGround(figure3);

t.isComplete() true

String[] figure4 = {"A", "B", "C", null, null, "D", "E"};

t = new ForestPlayGround(figure4);

t.isComplete() false

String[] emptyTree = {};

ForestPlayGround emptyT = new ForestPlayGround(emptyTree);

emptyT.isComplete() true

Extra points are awarded for completing:

 getLeftChild and gerRightChild methods

 getAncestor and getDescendants methods

 isFull and isComplete methods

 getAncestor, getDescendants, isFull and isComplete methods

 all methods in the ForestPlayGround class.

