
Fun with 2D Arrays

Special notes: This problem is worth 11 points.

In this problem you are to complete three methods in the FunWith2Darrays class. The three methods are

isArrowHeadArray, isIntegerGeneralizedPermutationArray and the isMongeArray method.

The isArrowHeadArray method has a single int[] [] isArrow parameter and returns a

boolean. isArrowHeadArray returns true is the parameter isArrow is an Arrowhead matrix and

false if isArrow is not an Arrowhead matrix.

According to Wikipedia: In the mathematical field of linear algebra, an arrowhead matrix is a square matrix
containing zeros in all entries except for the first row, first column, and main diagonal. In other words, the
matrix has the form





















00

0*0*

00**

A

Where * is any non-zero value.

In writing the isArrowHeadArray method, you may assume:

 isArrow[i].length == isArrow[k].length

 for all i, k, with 0 <= i, j < isArrow.length

 isArrow.length > 0 && isArrow[0].length > 0

The following table shows the results of two calls of the isArrowHeadArray method.

The following code Returns

FunWith2DArrays ma = new FunWith2DArrays();

int[][] isArrow = { {0, 0, 0, 0},

 {0, 0, 16, 29},

 {0, 28, 0, 34},

 {0, 13, 6, 0} };

ma.isArrowHeadArray(isArrow);

false

FunWith2DArrays ma = new FunWith2DArrays();

int[][] isArrow1 = { {10, 11, 12, -3},

 {20, -1, 0, 0},

 {30, 0, 33, 0},

 {40, 0, 0, 9} };

ma.isArrowHeadArray(isArrow1);

true

The isIntegerGeneralizedPermutationArray method has a single int[] [] gpa

parameter and returns a boolean. isIntegerGeneralizedPermutationArray returns true

if the parameter gpa is a Generalized Permutation Matrix (with integer elements) and false if gpa is not a
Generalized Permutation Matrix.

According to Wikipedia: In mathematics, a generalized permutation matrix is a matrix with the same nonzero

pattern as a permutation matrix, i.e. there is exactly one nonzero entry in each row and each column. Unlike a

permutation matrix, where the nonzero entry must be 1, in a generalized permutation matrix the nonzero

entry can be any nonzero value. An example of a generalized permutation matrix is























1050

00010

5000

0200

In writing the isIntegerGeneralizedPermutationArray method, you may assume:

 gpa[i].length == gpa{k].length

 for all i, k, with 0 <= i, j < gpa.length

 gpa.length > 0 && gpa[0].length > 0

The following code shows the results of a call to the isIntegerGeneralizedPermutationArray

method.

The following code Returns

FunWith2DArrays ma = new FunWith2DArrays();

int[][] isgpm1 = { { 0, 0, -2, 0},

 { 0, 0, 0, -5},

 {10, 0, 0, 0},

 { 0, 5, 0, 0} };

ma.isIntegerGeneralizedPermutationArray(isgpm1));

true

The isMongeArray method has a single int[] [] ma parameter and returns a boolean.

isMongeArray returns true if the parameter ma is a Monge Matrix (with integer elements) and false if

ma is not a Monge Matrix.

According to Wikipedia: Monge arrays, or Monge matrices, are mathematical objects named for their
discoverer, the French mathematician Gaspard Monge.

An m-by-n matrix is said to be a Monge array if, for all lkji ,,, such that mki 0 and nlj 0 one

obtains

So whenever we pick two rows and two columns of a Monge array (a 2 × 2 sub-matrix) and consider the four
elements at the intersection points, the sum of the upper-left and lower right elements (across the main
diagonal) is less than or equal to the sum of the lower-left and upper-right elements (across the antidiagonal).

This matrix is a Monge array:





























3453516675

621193336

2337324445

71761311

2434222824

2329162217

2328131710

For example, take the intersection of second and fourth row with the first and fifth column. The four elements
are:










711

2317

17 + 7 = 24
23 + 11 = 34

The sum of the upper-left and lower right elements is less than or equal to the sum of the lower-left and
upper-right elements.

In writing the isMongeArray method, you may assume:

 ma[i].length == ma[k].length

 for all i, k, with 0 <= i, j < ma.length

 ma.length > 0 && ma[0].length > 0

Do NOT assume the 2d array is a square array

The following code shows the results of the isMongeArray method.

The following code Returns

FunWith2DArrays ma = new FunWith2DArrays();

int[][] values = { {10, 17, 13, 28, 23},

 {17, 22, 16, 29, 23},

 {24, 28, 22, 34, 24},

 {11, 13, 6, 17, 7},

 {45, 44, 32, 37, 23},

 {36, 33, 19, 21, 6},

 {75, 66, 51, 53, 34} };

ma.isMongeArray(values);

true

http://en.wikipedia.org/wiki/Main_diagonal
http://en.wikipedia.org/wiki/Main_diagonal
http://en.wikipedia.org/wiki/Antidiagonal

